
Semantic Annotation of Web Service

Ivan Di Pietro, Francesco Pagliarecci, Luca Spalazzi

January 2008

Abstract
In this technical report, we propose a new approach to the discovery, the

selection, and the automated composition of distributed processes described
as semantic web services through a new semantic annotation.

In existing approaches, the importance of describing web services at
theprocess-levelis widely recognized, as witnessed by standard languages
for describing business processes, likeBPEL, and standards for semantic
web services, likeOWL-S and WSMO. The approaches that do not deal
with semantics cannot exploit the ability to do reasoning about what
services do. For this reason, in our opinion, the role of semantics is very
important in order to solve the above problems. On the other hand, current
semantic web services, such as those based on OWL-S and WSMO, in
spite of their expressive power, are hard to use in practice. Indeed, they
require comprehensive and usually large ontological descriptions of the
processes, and rather complex (and often inefficient) reasoning mechanisms.

In our approach, we still have a representation of the service at process
level including the concept of state (definitely, a web service can be mapped
into a State Transition System), but we reduce to the minimum the usage of
ontological descriptions of processes. As a consequence, we can perform a
limited, but efficient and still useful semantic reasoning for verifying, dis-
covering, selecting, and composing web services, at the process level.

The key idea is to keep separate the procedural and the ontological de-
scriptions, and to link them through semantic annotations. We define the
formal framework, and propose a technique that can exploit simple reason-
ing mechanisms at the ontological level, integrated with effective reasoning
mechanisms devised for procedural descriptions of web services.

1 Introduction

In this technical report, we propose a new approach to discovery, selection,
and automated composition of distributed processes described as semantic

1

web services through a new semantic annotation of processes.
The importance of describing web services at theprocess-levelis widely

recognized, a witness being the standard languages for describing business
processes, likeBPEL [3], and the most popular standards for semantic web
services, likeOWL-S [9] and WSMO [1]. In a process-level description, a
web service is not simply represented as an “atomic” component - with its
inputs, outputs, preconditions, and effects - that can be executed in a sin-
gle step. Instead, the interface of the service describes its behavior, i.e.,a
process that interacts with other services in different steps, and which can
have different control constructs, e.g., sequence, condition, and iteration. We
can exploit the service’s behavioral model to perform verification, discov-
ery, selection, and composition tasks and to express requirements at process
level (e.g., see [2]). This is especially true for composition, as witnessed
by [15, 12, 4, 23, 19]. Some approaches do not deal with semantic web ser-
vices, and cannot thus exploit the ability to do reasoning about what services
do. This is the case of techniques for composingBPEL processes [19] and of
theoretical frameworks for the composition of services represented as finite
state automata [12, 4]. From the other side, the approaches that have been
proposed so far to exploit semantics (see, e.g., [15, 23, 1]) describe processes
with comprehensive ontologies. They have the practical disadvantage to re-
quire long descriptions that are time- and effort- consuming, and that are
very hard to propose in practice for industrial applications. Such semantic
descriptions of web services are based on expressive languages such asOWL

[14] or WSMO [1] that require complex reasoning mechanism. Indeed, for
instance, the OWL family of languages are based on the description logics
SHIQ andSHIOQ, that have reasoning services that areEXPTime and
NEXPTime, respectively [22].

In this technical report, we formally define the notion of enriching the
representation of web services with a semantically annotated behavioral de-
scription and the grounding algorithm that is needed for discovery, selection,
verification, and composition. According to the line described in [20, 17],
the key idea is to keep separate the procedural description of processes and
their ontological descriptions, and adding semantic annotations that link the
two. Therefore, the main aspects of this technical report are the following:

• The procedural behavior of a web service is described with languages
that have been designed to describe processes; in this chapter we re-
fer to BPEL [3]. A BPEL process can be formally modeled as a State
Transition Systems (STS) [23].

• The data exchanged among processes are described in a standard
WSDL file.

• The semantics of exchanged data is described in a separate ontolog-
ical language. The language we use isWSML [1] that belongs to the

2

Description Logic family [22].

• We define an annotation language that allows us to link data (WSDL)
and behavioral (BPEL) definitions of the process with ontology ele-
ments (WSMO). The language is based on XML and, from a theoreti-
cal point of view, it belongs to the assertional part of the a Description
Logic. Annotations are necessary to give semantics to the exchanged
data (e.g., which relations exist between the data given in input to the
service and the data received as answers from the service), as well as
to define the effects and outcomes of the service executions (e.g., to
identify the successful executions of the service and distinguish them
from the failures, and to describe the effects associated to the success-
ful executions). This approach allows us to annotate only what we
need and leaveBPEL the duty of describing the behavior.

• We define a language that can express requirements on the behavior
of the service that has to be verified, selected, or composed. The lan-
guage is a temporal logic based on CTL (Computation Tree Logic)
[11], enriched with concept and role assertions of a Description Logic.

• We propose a grounding algorithm that includes semantic annotations
in the STS that models the web services. This allows us to obtain
an STS model processable by existing model checkers (e.g.[8]) and
planners (e.g. [5]) to solve verification, selection, and composition
problems.

The technical report is structured as follows. In Section 2 we expound
the overview of our approach. Section 3 shows the schema (XSD) of the an-
notation file. In Section 4, we define semantically annotated state transition
systems that describeBPEL processes. In Section 5, we report the language
for describing semantically annotated conditions. Section 6 shows an al-
gorithm for the tranformation of annotated STS and temporal specifications
into their propositional versions. Finally, Section 7 reports some concluding
remarks.

2 Overview of the Approach: The Method-
ology

A web service can be characterized in terms of its data and its behavior. Data
description is the definition of the data types used within the service and
this can be done by means of the standard languageWSDL (Web Services
Description Language). This is not enough, sinceWSDL only represents the
static part of a service. WithWSDL, we are not aware of the actual control
and data flows in the process: we only know the interface of the web service
and the data structures it uses. The behavioral aspects of a service can be

3

represented with several languages. One of the most promising languages,
which is going to become ade factostandard in process representation, is
BPEL (Business Process Execution Language). As a consequence, we will
refer toBPEL in our running example.

WSDL plusBPEL are the “classical”, purely syntactical representation of
a process. This provides us with a set of powerful tools to solve several
problems, but we need to add semantics to this representation. The use of
semantics allows us to use some reasoning techniques that help us solve
several problems related to services in a pervasive computing environment,
such as selection, discovery and composition.

All these problems have in common the need of verifying certain condi-
tions over the behavior and the semantics of a given service. For instance,
let us consider process selection: given a set of processes and a user speci-
fication, selection consists in recognizing which processes satisfy the given
specification. Thanks to the use of semantics, we can express both processes
and specifications as semantically enriched models.

Our approach can be described in four steps:

1. annotation,

2. model translation,

3. grounding,

4. model checking.

Annotation: it is the phase in which both data and behavioral definitions
of the process are enriched with links to the ontology. The ontology should
be a commonly accepted formalization of a certain domain. It is difficult to
have such an ontology, indeed every organization may have its own one. On-
tology matching is a parallel problem and we will not delve into it, therefore
we assume we have a general shared ontology for our domain.

There are different approaches to process annotation (e.g., seeSAWSDL

[25]). We propose a novel one that aims mainly at preserving the original
syntax of theBPEL and WSDL files. Therefore, in our approach the anno-
tation is put in a different file with links toBPEL andWSDL through XPath
expressions.

Model Translation: it consists in expressing our process in a different
form that can be model checked easily and automatically. As model checkers
usually deal with some kind of State Transition Systems, we translate an
annotatedBPEL process into anAnnotated State Transition Systems(ASTS).
This step can be done automatically.

Grounding: it is the procedure by which the semantic annotations are
”lowered” to a purely syntactic form; roughly speaking, concept and role
assertions must be transformed into propositions. From a technical point of
view, each annotated state is a knowledge base, therefore we need to usethe

4

query answering service[16] of Description Logics in order to know which
assertions hold in that state. This ensures that our annotations can be treated
by existing model checkers that work only with propositions. The grounding
is applied to both the Annotated STS and the goal specification, which is
expressed inAnnotated CTL. After the execution of the grounding algorithm,
we obtain a gound (propositional) STS and a ground (propositional) CTL
specification.

Model checking: it consists in checking whether the ground CTL spec-
ification is verified by the ground STS, if not it provides a counter-example.
In our experiments, we used NuSMV ([8]), a well-known state-of-the-art
model checker. As a consequence, in order to be processed by NuSMV, the
ground STS is described into the SMV language.

3 Annotation Technique

The technologies we are going to refer to are:

• WSDL: the “stateless” description of a web service. It gives informa-
tion about the data used by the service and the exposed interface.

• BPEL: the procedural description of a web process.

• WSML: the language used to build up an ontology.

Our approach is driven by several requirements:

• To annotate web processes with semantics.

• To keep the schema of the technologies safe and computable by exist-
ing tools.

• To develop an annotation strategy to cope both with static (“data ori-
ented”) and procedural (“process oriented”) annotations.

All these requirements can be accomplished by keeping the annotation sep-
arate fromWSDLs andBPELs. Therefore, we will use an annotation file and
we will link it to the related files through XPath queries. Our annotation
file is defined over XML syntax, so we are going to come up with an XML
schema for annotation.

According to Description Logic jargon, within a given ontology we have
a terminological component (calledT-BOX) and an assertional component
(calledA-BOX). TheT-BOXcontains concept definitions as well as general-
ization and aggregation relationships among them. This part of the ontology
is directly provided by aWSML file. The T-BOX simply matches the set of
the declared concepts and their structure (i.e. their attributes/roles).

On the other hand, theA-BOXcontains assertion definitions of two dif-
ferent types:

• concept assertions,

5

Figure 1: Annotation core components

• role assertions.

Concept assertionshave the forma:C. Such an expression tells us that the
individual a is an instance of the conceptC. For example,joe:Personstates
that Joe is a (instance of) Person.

Role assertionsspecify the value that a certain role of an individual has.
They have the forma.R=b. Intuitively, such an expression means that the
value of the attributeRof the individuala is b, whereb is another individual
or a literal. For example,joe.Mother=marystates that Joe has a mother
whose name is Mary. Mary is the identifier of another individual. As second
example: joe.Surname=’Smith’states that the surname of Joe is ’Smith’,
where ’Smith’ is a string.

The roles used in role assertions are defined in the terminological
part of the ontology. For example, if the two assertionsjoe:Personand
joe.Surname=’Smith’hold, this means that the conceptPersonhas a role
Surnamewhose type is string (formally:Person= ∀ Surname . String⊓
. . .).

Basically, in our approach, we have a T-BOX for all the services we have
to annotate in our domain — it contains all the concepts we need to represent
our application domain — and we associate an A-BOX for each state of
each service — it describes what are the effects of a given action in termsof
concept and role assertions. Nevertheless, there are some assertionsthat do
not depend on any action, but hold everywhere. For example, we couldsay
thatmaleandfemaleare individuals of the conceptGender. This is always
true, no matter how our process evolves. This will become clearer with the
introduction of global assertions in our annotation.

Let us now analyze the schema of an annotation file. The core compo-
nents are shown in Fig 1.

6

3.1 Datatype Annotation

In this section of an annotation file, there are several assertions that map
WSDL elements intoWSML concepts. There is no direct mapping between
data and concepts at structural level. In other words, it is perfectly legal to
annotate an element with a concept whose attributes do not match with those
of the element neither in number nor in type.

Data type annotations simply impose some restrictions on the procedu-
ral annotations, i.e., the A-BOXes related to the State Transition System. As

Figure 2: Datatype annotation

shown in Fig 2, datatype annotation is composed of two elements. Source
node is a XPath string pointing to aWSDL part (message, element, com-
plex type, simple type or one of their sub-parts). Target concept is aWSML

identifier pointing to a concept.
An example of datatype annotation is the following:

3.2 Declarations

We make this assumption:individuals with the same name (id) refer to
the same object. So, if we had a pair of assertions like:
god.Exists = True
god.Exists = False

we would refer to the same instance ’god’, no matter if the A-BOX
would be inconsistent. In the declarations section we simply list all the
individuals used in the assertions.

< source node > /definitions/message[7] < /source node >
< target concept >

http : //www.diiga.univpm.it/ontologies/virtualStore#Checkout
< /target concept >

7

Figure 3: Declarations

Figure 4: Global assertions

3.3 Global Assertions

Global assertions are concept and role assertions that hold in every state of
our process. They are a sintactic sugar, since they have been insertedhere
just to avoid to repeat them in every state (i.e., in the procedural annotations
- see further). Instances directly declared in aWSMO ontology are mapped
into global assertions. This is the case of the instances of the conceptGen-
der.

3.4 Procedural Annotation

A procedural annotation (see Fig. 5) contains sets of concept and roleasser-
tions. A procedural annotation is always referred to aBPEL activity. This
activity is identified by the activity attribute, whose value is an XPath expres-
sion pointing into theBPEL. Intuitively, a procedural annotation contains all
the assertions that hold after that the relatedBPEL activity has been executed.

3.5 Assertions

Let us now delve into the structure of concept and role assertions. Asser-
tions are used both in global assertions and in procedural annotations. An

Figure 5: Procedural annotation

8

assertion is composed of a set of concept assertions and role assertions (Fig.
6).

Figure 6: Assertions

A concept assertiontells us that in a given activity (state of the STS),
there exists an individual of a certain concept. Fig. 7 shows the structureof
a concept assertion within the proposed XML schema.

Figure 7: Concept assertion

The individual can be a brand new one, with a name chosen by the user.
In the other case, a new individual is associated to aBPEL variable. The
variable is identified by its name. It is also possible to refer to a part of a
variable and, in case the part is a complex type, we can use an XPath query
to delve into it. In this case datatype annotations play their role, because
they specify a constraint on this type of annotation. If a datatype annotation
has previously mapped variablex into a conceptC, then a concept assertion
over the same variablex must have the conceptC or one of its derived

9

Figure 8: Role assertion

concepts as the right part. In every case, the individual used in the assertion
is identified by the value of theid attribute, which refers to a previously
declared individual in the declaration section.

Role assertionsexpress a relation between an attribute (role) of a certain
individual and another individual.

The left part is an individual previously declared. The role points to
one of the attributes of the concept to which the individual belongs to. The
role is identified by aWSML URI. The right part of a role assertion may be
another individual. The optional attribute element is not currently supported
and is intended for future use. It would allow us to create role assertions
like the following one:

x.R = y.S

where S is one of the attributes of y’s concept. Alternatively, the right part
may be an individual directly declared in the ontology. This kind of individ-
uals are considered as global ones.

4 BPEL Processes as Annotated STSs

We encodeBPEL processes (extended with semantic annotations) asanno-
tated state transition systems. State transition systems (STS) describe dy-
namic systems that can be in one of their possiblestates(some of which are
marked asinitial states) and can evolve to new states as a result of perform-
ing someactions. We distinguish actions ininput actions, output actions,
and τ . Input actionsrepresent the reception of messages,output actions
represent messages sent to external services, andτ is a special action, called

10

internal action, that represents internal evolutions that are not visible to ex-
ternal services. In other words,τ represents the fact that the state of the
system can evolve without producing any output, and without consuming
any input (this is a consequence of the fact we useabstractBPEL, where the
internal actions are “opaque”). Atransition relationdescribes how the state
can evolve on the basis of inputs, outputs, or of the internal actionτ .

In anAnnotatedSTS, we associate to each state a set ofconcept asser-
tions and role assertions. This configures a state as the assertional com-
ponent (or ABox) of a knowledge representation system based on a given
description logic where the ontology plays the role of the terminological
component (or TBox). Therefore,concept assertionsare formulas of the
form a : C (or C(a)) and state that a given individuala belongs to (the
interpretation) of the conceptC. Role assertionsare formulas of the form
a.R = b (orR(a, b)) and state that a given individualb is a value of the role
R for a. As a consequence, each action can be viewed as a transition from
a state consisting in an ABox in a different state consisting in a different
ABox.

Definition 1 Annotated State Transition System
Anannotated state transition systemdefined over a state transition systemΣ
is a tuple〈Σ, T ,Λ〉 where:

• Σ = 〈S,S0, I,O,R,P,X〉 is the state transition system,

• S is the finite set of states;

• S0 ⊆ S is the set of initial states;

• I is the finite set of input actions;

• O is the finite set of output actions;

• R ⊆ S × (I ∪ O ∪ {τ}) × S is the transition relation.

• P is the set of propositions that in an annotated STS is empty (P = ∅);

• X : S → 2P is the observation function, that in an Annotated STS is
undefined.

• T is the terminology (TBox) of the annotation,

• Λ : S → 2AT is the annotation function, whereAT is the set of all the
concept assertions and role assertions defined overT ,

5 Conditions on Annotated STSs

In order to express process-level verification, selection, and composition re-
quirements, we need to express conditions onAnnotated STSs, i.e., condi-
tions on concept and role assertions that hold in given states. In order to
do that, we first give some definitions. Let us start with the definition of
conjunctive query over a description logic as reported in [16]

11

Definition 2 (Conjunctive Query)
A conjunctive query q over 〈T ,Λ(s)〉 is a set of atoms

{p1(x1), . . . , pn(xn)} where eachpi(xi) is either pi(xi) or pi(xi,1, xi,2)
andxi is a tupla of variables or individuals:

pi(xi) = xi : Ci pi(xi,1, xi,2) = xi,1.Ri = xi,2

V(q) denotes the set of variables ofq andC(q) denotes the set of individ-
uals ofq. Therefore,VC(q) = V(q) ∪ C(q) denotes the set of variables
and individuals ofq. WhenV(q) = ∅ we have a ground conjunctive query,
i.e. eachxi, xi,1, or xi,2 is an individual. A concept assertion in a proposi-
tional condition intuitively denotes a typical description logic problem: the
retrieval inference problem. Letx : C a goal concept assertion, the retrieval
inference problem is the problem of finding for each states all individuals
mentioned in the ABoxΛ(s) that are an instance of the conceptC w.r.t. the
given TBoxT . A non-optimized algorithm for a retrieval can be realized by
testing for each individual occurring in the ABox whether it is an instance of
the conceptC. Once we have retrieved a set of instances{a} for the concept
assertionx : C, we can substitutex in the propositional condition with the
retrieved instances and check whether the condition holds. Therefore,a con-
junctive query denotes in fact a set of specificationsto be checked instead of
a single one.

A temporal specification for an Annotated STS is a CTL formula con-
taining conjunctive queries, as defined in the following:

Definition 3 (Temporal Specification of Annotated STS)
A Temporal Specificationφ(q1, . . . , qm) over〈Σ, T ,Λ〉 is a formula defined
over the set of conjunctive queries{q1, . . . , qm} as follows:

φ = qi | φ ∧ φ | φ ∨ φ | ¬φ | AF φ | AG φ | EF φ | EG φ | AX φ | EX φ |

A (φ U φ) | E (φ U φ) | A (φ B φ) | E (φ B φ)

We can extend to temporal specifications the definition ofV as follows:
V(φ(q1, . . . , qm)) = V(q1) ∪ V(q2) ∪ . . .V(qm). The definition ofC and
VC can be extended in a similar way. A ground temporal specification is a
formula without variables, i.e., such thatV(φ(q1, . . . , qm)) = ∅. Obviously,
we can annotate other temporal languages, as for example EAGLE [10], but
for the goal of this chapter, the annotation of CTL formulas is enough.

CTL is a propositional, branching-time, temporal logic. Intuitively, ac-
cording to our extension, a temporal condition must be verified along all
possible computation paths (state sequences) starting from the current state.
Concerning the temporal operators (i.e.,AF, EF, AX, and so on), they main-
tain the same intuitive meaning that they have in standard CTL. In other
words,EXφ is true in a states if and only if s has at least a successort such
thatφ is true att. E[φUψ] is true in a states if and only if there exists a path
starting ats and an initial prefix of the path such thatψ holds at the last state

12

of the prefix andφ holds at all other states along the prefix.EGφ is true at
states if there is at least a path starting ats such thatφ holds at each state on
the path. As a consequence of the fact that a temporal specification has con-
cept and role assertions,a temporal condition denotes a set of specifications
to be checked instead of a single one, as well as for a conjunctive query.

The semantics of a temporal specification is defined in three steps: first,
we define the semantics of a ground conjunctive query (for the sake of space,
we refer the reader to [16] for details); then, we define the semantics of a
ground temporal specification; finally, we define the semantics of temporal
specification with variables.

Definition 4 (Semantics of Ground Temporal Specifications of Annotated STS)

Let 〈Σ, T ,Λ〉 be anannotated state transition system. Let q be a ground
conjunctive query over〈T ,Λ(s)〉. Let φ and ψ be ground temporal
specifications. Then defined

• 〈Σ, T ,Λ〉, s |= q iff 〈T ,Λ(s)〉 |= q

• 〈Σ, T ,Λ〉, s |= φ ∧ ψ iff 〈Σ, T ,Λ〉, s |= φ and〈Σ, T ,Λ〉, s |= ψ

• 〈Σ, T ,Λ〉, s |= ¬φ iff 〈Σ, T ,Λ〉, s 6|= φ

• 〈Σ, T ,Λ〉, s |= EX φ iff ∃t ∈ S,∃α ∈ I∪O∪{τ} such thatR(s, α, t)
and〈Σ, T ,Λ〉, t |= φ

• 〈Σ, T ,Λ〉, s |= EG φ iff 〈Σ, T ,Λ〉, s |= φ and 〈Σ, T ,Λ〉, s |=
EX EG φ

• 〈Σ, T ,Λ〉, s |= E φUψ iff 〈Σ, T ,Λ〉, s |= ψ or

[〈Σ, T ,Λ〉, s |= φ and 〈Σ, T ,Λ〉, s |=

EX E φUψ]

Definition 5 (Semantics of Temporal Specifications of Annotated STS)
Let φ(q1, . . . , qm)[x] be a temporal specification such that
V(φ(q1, . . . , qm)) = {x} is the corresponding set of variables. Then

φ(q1, . . . , qm)[x]I(s) = {a | 〈Σ, T ,Λ〉, s |= φ(q1, . . . , qm)[x/a]}

is the interpretation of the temporal specification.

6 The Grounding Algorithm

A temporal specification can be efficiently checked by means of modal
checking [6, 8]. Concerning annotated temporal specifications, the basic
idea consists of using model checking, as well. However, the traditional
model checkers cannot be used, as they are not able to deal with the ontolog-
ical reasoning necessary to cope with state annotations. In this section, we
discuss an approach that makes it possible to reuse existing model checkers

13

Algorithm: Ground Process Generation
input : Γ = 〈〈S,S0,A,R, , 〉, T , Λ〉

φ = φ(q1, . . . , qm)
output: Σo = 〈S,S0,A,R,P,X〉

Φ /* Set of ground CTL formulae */
{

P = ∅
for each qi (1 ≤ i ≤ m) do Asser(qi) = ∅;
for each s ∈ S do {

X (s) = Λ(s);
for each qi (1 ≤ i ≤ m) do {

X (s) = X (s) ∪ cq answer(qi, 〈T , Λ(s)〉);
P = P ∪ cq answer(qi, 〈T , Λ(s)〉);
Asser(qi) = Asser(qi) ∪ cq answer(qi, 〈T , Λ(s)〉);

}
}
Φ = ground ts({q1, . . . , qm}, φ(q1, . . . , qm),

{Asser(q1), . . . ,Asser(qm)});
return Σo , Φ;

}

Algorithm: ground ts
/* Ground Spec. Generation */
input : L /* Set of conjunctive queries */

φ /* Partially ground CTL formula */
A /* Set of sets of assertions */

output: Φ /* Set of ground CTL formulae */
{

Φ := ∅;
if L 6= ∅ {

a := head(L);
for each a′ ∈ Asser(a) do {

ϕ := substitute a with a′ in φ;
Φ := Φ∪

ground ts(rest(L), ϕ, rest(A));
}

}
return Φ

}

Figure 9: The algorithm for building a ground STS and relatedset of ground
specifications.

(e.g., NuSMV [8]), in order to exploit their very efficient and optimized ver-
ification techniques. This approach is based on the idea to solve the problem
of knowing in which states the assertions contained in the temporal specifi-
cation holdbefore the model checking task. The algorithm is based on the
query answering service (e.g., the algorithm reported in [16]). Therefore,
the algorithm consists of three steps.
Ground process generation(see Figure 9): it aims to map assertions (of the
annotated STS) into propositions in order to obtain a ground STS. It con-
sists of applying the conjunctive query ansuering service for each conjunc-
tive query in the temporal specification and for each state of the annotated
STS. Therefore, for each conjunctive query, we have a set of assertions to
map into state propositions. The complexity of this algorithm is polynomial
in the complexity of the query answering algorithm. The query answering
algorithm has been shown to be PTIME-Hard with respect to data complex-
ity for extendedDL-Lite languages [7]. The result is that the ground process
generation has a polynomial complexity with respect to data complexity.
Ground spec. generation(Figure 9): it aims to transform assertions con-
tained in the annotated temporal specification into conditions on state propo-
sitions in order to obtain a ground temporal specification. It consists of
generating a set of specifications by setting variables in the temporal speci-
fication with instances retrieved in the previous step.
Model checking: it consists of applying the model checking algorithm to
each ground temporal specification generated in the previous step.

14

7 Related work and conclusions

This work is based on and extends the work reported in [20, 17]. In this
chapter we focused more on the semantic annotation and the grounding pro-
cess. TheWSMO [1] framework recognizes the importance of interfaces that
describe behaviors of services, and proposes the use of mediators to match
service behaviors against (discovery) goals. However, theWSMO framework
includes services representations in its ontological model. We chose to use
a bottom-up approach, not dismissing the existing and widespread technolo-
gies likeBPEL. Indeed,BPEL provides us with the behavioral features of a
service, whereas inWSMO we would need to express them in the orchestra-
tion and the coreography properties. The work onWSDL-S andMETEOR-S

[21, 18, 24] provides semantic annotations forWSDL. It is close in spirit
to ours, but does not deal with semantically annotated (BPEL) process-level
descriptions of web services. The work in [13] is also close in spirit to
our general objective of bridging the gap between the semantic web frame-
work and the business process technologies. However, [13] focuses on the
problem of extendingBPEL with semantic web technology to facilitate web
service interoperation, while the problem of automated composition is not
addressed.

Recently, an increasing amount of work is dealing with the problem of
composing semantic web services taking into account their behavioral de-
scriptions [15, 26, 23, 1]. In this context, research is following two related
but different main approaches:OWL-S [9] andWSMO [1]. Approaches based
on OWL-S [15, 26, 23] are different from the one proposed in this chapter,
since, inOWL-S, even processes are described as ontologies, and therefore
there is no way to separate reasoning about processes and reasoningabout
ontologies. In the approach undertaken inWSMO, processes are represented
as Abstract State Machines, a well known and general formalism to repre-
sent dynamic behaviors. The idea underlyingWSMO is that the variables of
Abstract State Machines are all defined with terms of theWSMO ontological
language. Our processes work instead on their own state variables, someof
which can be mapped to a separated ontological language, allowing for a
minimalist and practical approach to semantic annotations and for effective
reasoning to discover, select, or compose services automatically. Indeed, the
aim of the work onWSMO is to propose a general language and representa-
tion mechanism for semantic web services, while we focus on the practical
problem of providing effective techniques for selecting and composing se-
mantic web services automatically. It would be interesting to investigate
how our approach can be applied toWSMO Abstract State Machines rather
thanBPEL processes, and how the idea of minimalist semantic annotations
can be extended to work with the rest of theWSMO framework. This task is
in our research agenda.

15

In [2] the author proposes combination of theSHIQ(D) DL and µ-
calculus. In our approach, we use CTL to express temporal specifications.
CTL is subsumed byµ-calculus, according with the minimalist nature of our
approach.

References

[1] The Web Service Modeling Framework - http://www.wsmo.org/.

[2] Sudhir Agarwal. A goal specification language for automated discov-
ery and composition of web services. InInternational Conference on
Web Intelligence (WI ‘07), Silicon Valley, USA, NOV 2007.

[3] T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
avarana. Business Process Execution Language for Web Services (ver-
sion 1.1), 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella. Automatic composition of E-Services that export their be-
haviour. InProc. ICSOC’03, 2003.

[5] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP:
a Model Based Planner. InIJCAI-2001 workshop on Planning under
Uncertainty and Incomplete Information, 2001.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking:1020 States and Beyond.Information and
Computation, 98(2), June 1992.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Data Complexity of Query Answering in Description Logics. AAAI,
2006.

[8] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a
new symbolic model checker.International Journal on Software Tools
for Technology Transfer, 2(4), 2000.

[9] The OWL Services Coalition. OWL-S: Semantic Markup for Web
Services, 2003.

[10] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language
for Extended Goals. InProc. AAAI’02, 2002.

[11] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal
Models and Semantics, chapter 14, pages 996–1072. Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, New York, N.Y., 1990.

16

[12] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look
Behind the Curtain. InProc. PODS’03, 2003.

[13] D. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic
Web: The Bottom-Up Approach to Web Service Interoperation. In
Proc. of 2nd International Semantic Web Conference (ISWC03), 2003.

[14] D. L. McGuinness and Editors F. van Harmelen. OWL Web
Ontology Language Overview. W3C Recommendation, 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[15] S. Narayanan and S. McIlraith. Simulation, Verification and Auto-
mated Composition of Web Services. InProc. WWW’02, 2002.

[16] M. Ortiz, D. Calvanese, and T. Eiter. Characterizing Data Complexity
for Conjunctive Query Answering in Expressive Description Logics.
AAAI, 2006.

[17] F. Pagliarecci, M. Pistore, L. Spalazzi, and P. Traverso. Web service
discovery at process-level based on semantic annotation. InProceed-
ings of the Fifteenth Italian Symposium on Advanced Database Sys-
tems (SEBD 2007), 17-20 June, Torre Canne, BR, Italy, 2007.

[18] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web
Service Annotation Framework. InWWW04, 2004.

[19] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Com-
position of Web Services by Planning at the Knowledge Level. InProc.
IJCAI’05, 2005.

[20] M. Pistore, L. Spalazzi, and P. Traverso. A minimalist approach to
semantic annotations for web processes compositions. InProc. of the
3rd European Semantic Web Conference (ESWC 2006), Budva (Mon-
tenegro), 11–14 June, 2006. Springer–Verlag, Berlin, Germany.

[21] A. Sheth, K. Verna, J. Miller, and P. Rajasekaran. Enhacing WebSer-
vice Descriptions using WSDL-S. InEclipseCon, 2005.

[22] S. Tobies.Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

[23] P. Traverso and M. Pistore. Automated Composition of Semantic Web
Services into Executable Processes. InProc. ISWC’04, 2004.

[24] K. Verma, A. Mocan, M. Zarembra, A. Sheth, and J. A. Miller. Linking
Semantic Web Service Efforts: Integrationg WSMX and METEOR-S.
In Semantic and Dynamic Web Processes (SDWP), 2005.

[25] W3C Semantic Annotations for Web Service Description Language
Working Group. Semantic Annotations for WSDL and XML Schema,
2007.

17

[26] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automat-
ing DAML-S Web Services Composition using SHOP2. InProc.
ISWC’03, 2003.

18

